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A B S T R A C T

One of the main steps in probabilistic seismic collapse risk assessment is estimating the fragility function
parameters. The maximum likelihood estimation (MLE) approach, which is widely used for this purpose,
contains the underlying assumption that the likelihood function is known to follow a specified parametric
probability distribution. However, this assumed distribution may not always be consistent with the ‘‘true’’
probability distribution of the collapse data. This paper implements the Information matrix equivalence
theorem to identify the presence of model misspecification i.e., if the assumed collapse probability distribution
is, in fact, the ‘‘true’’ one. In the presence of model misspecification, the fragility parameter estimates continue
to be asymptotically normally distributed but the variance–covariance matrix is no longer equal to the inverse
of the Fisher’s Information matrix. To increase the robustness of the variance–covariance matrix, the Huber–
White sandwich estimator is implemented. Using collapse data from eight woodframe buildings, the effect
of model misspecification on fragility parameter estimates and collapse rate is quantified. For the considered
building cases, the parameter estimation uncertainty in the collapse risk did not increase when the ‘‘sandwich’’
estimator was used compared to when probability model misspecification was not considered (i.e., using MLE).
The proposed framework should be used to further investigate the issue of probability model misspecification
as it relates to fragility parameter estimation since only a single construction type (woodframe buildings) and
limit state (collapse) was considered in the current study.
1. Introduction

Fragility curves are widely used in modern performance-based
earthquake engineering (PBEE) methodologies to quantify probabilistic
seismic risk (e.g., [1]). Component level fragility functions describe the
probability of exceeding a damage state of interest conditioned on a
response demand (e.g., story drift, peak floor acceleration) level. At
the building level, seismic fragility functions relate a ground motion
intensity measure (IM) to a limit state of interest (e.g., collapse, post-
earthquake structural safety). At either scale, seismic fragility functions
are developed using empirical data from experiments or field obser-
vations or data generated from numerical analyses. Regardless of the
data generation process, one of several alternative statistical procedures
is used to fit an appropriate model. In general, fragility curves can
be developed using either parametric or non-parametric approaches.
Parametric fragility curves are based on a predefined functional form
or probability distribution [2–5]. On the other hand, non-parametric
fragilities do not need to conform to a specific functional form or
distribution [6].

∗ Corresponding author.
E-mail address: laxman.dahal@ucla.edu (L. Dahal).

Collapse risk assessment is a central part of the 2nd generation PBEE
procedure. Within this context, fragilities functions are used to quantify
the probability of collapse conditioned on the IM level. By integrating
the fragility function with an appropriate hazard curve, seismic collapse
risk can then be assessed in terms of the mean annual frequency
of exceedance or the probability of collapse over some predefined
period (e.g., the service life of a building). The lognormal cumulative
distribution function (CDF) is commonly used to fit parametric collapse
fragilities [2–4,7]. The required data can be generated using proce-
dures such as incremental dynamic analyses (IDAs) [8] or multiple
stripe analysis (MSA) [9]. The IDA procedure incrementally scales each
ground motion within a given record set until it causes collapse. The
IM level at which collapse occurs for each ground motion is the dataset
of interest. The method of moments [7] is then used to obtain the
associated lognormal distribution parameters (𝜃, 𝛽), where 𝜃 defines
the median collapse capacity while 𝛽 is the dispersion or logarithmic
standard deviation. The associated CDF is taken as the fragility func-
tion. MSA analyzes the structure at pre-defined hazard levels, which
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are also used as the basis for the ground motion selection. In other
words, unlike IDAs, a different suite of motions is selected and used
in the analyses at each hazard level. Also, a binary outcome variable
(e.g., 0 for non-collapse and 1 for collapse) corresponding to each
ground motion and hazard level forms the basis of the MSA collapse
data. Maximum likelihood estimation (MLE) is then used to obtain the
lognormal distribution parameters that define the collapse fragility. The
generalized linear model (GLM) with a Probit link function has been
presented as an alternative to the MLE-based approach to estimating
fragility parameters [2,3]. However, it is worth noting that the GLM
approach also relies on maximization of the likelihood function. The
primary difference between the two procedures is in the definition of
the likelihood function. For both methods, a key assumption is that the
random variable that describes the number of collapses at each hazard
level follows a binomial distribution. In other words, the probability
of a certain number of ground motion record(s) causing collapse at a
given hazard level is assumed to follow a binomial distribution. This
assumption is often made as a matter of mathematical convenience and
its implication to the fragility parameter estimates and the uncertainty
around those estimates has never been studied.

Within the PBEE framework, several sources of uncertainty are
recognized and, to varying degrees, considered. In collapse risks as-
sessments, record-to-record and modeling uncertainties have been the
primary focus of prior research and practice. The former is much more
commonly considered by utilizing one or more suites of ground motions
for response history analysis [10]. Modeling uncertainty arises from
the limitation in the data and knowledge that is used to develop the
numerical model. Bradley [11] describes four categories of modeling
uncertainty denoted as Types I through IV. Type I uncertainty is at-
tributed to a lack of knowledge about the measured values of physical
quantities or ‘‘basic’’ parameters (e.g., material strength and modulus).
Errors in the models used to relate measured quantities to constitutive
models constitute Type II uncertainty. Type III and Type IV modeling
uncertainty are related to the chosen constitutive model and system-
level idealization. Of the four categories, Types I and II are more
commonly addressed in the research literature on seismic collapse risk
assessments [12–17].

A third source of uncertainty that very few studies have addressed
is associated with the parameter estimation procedure used to develop
fragility functions (denoted as parameter estimation uncertainty in the
remainder of the paper). Building upon previous work, Lallemant and
Kiremidjian [18] derived closed-form confidence intervals for fragility
curves based on asymptotic normality. More specifically, uncertainties
in the GLM parameter estimates were quantified using the variance–
covariance (herein referred to as covariance) matrix of the estimated
parameters, which is computed by taking the inverse of the Fisher’s
information matrix. It is worth noting that this inverse relationship is
only valid when the probability model that is attributed to the data
is correctly specified [19]. Iervolino [20] quantified the uncertainty in
seismic collapse rates using the Delta method, which is an approximate
technique that uses a Taylor series expansion [21]. Both studies [18,
20] assume the correct specification of the probability model for the
collapse data. However, the validity of this assumption and the con-
sequence of model misspecification have not been addressed in the
literature in the context of building seismic collapse risk assessments.
Other studies [22,23] have implemented various sampling (e.g., Monte
Carlo simulation) and re-sampling (e.g., bootstrapping) techniques as
a practical approach to quantifying the record-to-record and modeling
uncertainty in the collapse rate. While sampling is a pragmatic tool to
quantify uncertainty, it does not directly address the model misspec-
ification issue. In fact, in the presence of model misspecification, the
random samples drawn using the covariance obtained from the Fisher’s
information matrix is incorrect.

This paper focuses on the effect of probability model misspec-
ification on collapse fragility parameter estimation and the associ-
2

ated uncertainty. The quasi-maximum likelihood estimator (QMLE) is
used to fit collapse fragility functions and quantify the uncertainty
in the associated lognormal parameters. We also utilize the fact that
QMLE is generally a consistent parameter estimator which minimizes
Kullback–Leibler Information Criterion (KLIC) [24]. Also known as KL
divergence, the KLIC characterizes how far apart the true probability
distribution is from the one that is assumed. In other words, minimizing
KL divergence ensures that ignorance about the true probability model
is minimized. QMLE is sometimes also referred to as the ‘‘minimum
ignorance’’ estimator [25]. The uncertainty in the collapse fragility
parameters obtained using QMLE is compared to the case where the
correct probability model is assumed i.e., using the MLE approach.
The next section of the paper outlines the theoretical properties of
QMLE and sandwich estimators. Second, MSA collapse data from four
unique single-family wood-frame buildings are used to implement the
Information matrix equivalence theorem to identify for misspecification
of a parametric model. Each building is analyzed for an existing and
retrofitted condition resulting in collapse data for a total of eight
buildings. MSA is conducted at 16 different intensity levels with 45
ground motions at each intensity [26]. Collapse risk including the
associated parameter estimation uncertainty is quantified using both
the MLE and QMLE procedures.

2. Huber–White (Robust) Sandwich estimators

Maximum likelihood is one of the most popular and principled
tools used for estimation and inference [19,27]. Maximum likelihood
relies on a fundamental assumption to ensure its key properties such as
consistency [28] and asymptotic normality [29] hold for a broad range
of applications. A parameter estimate (for instance, 𝜃̂) is said to be
consistent if 𝜃̂ → 𝜃0 as the sample size increases, where 𝜃0 is the ‘‘true’’
unknown parameter. Similarly, 𝜃̂ is said to be asymptotically normal
if

√

𝑛(𝜃̂ − 𝜃0) converges to a normal distribution with an asymptotic
variance of the estimate i.e.

√

𝑛(𝜃̂ − 𝜃0) → N(0, 𝜎2
𝜃0
). The assumption

n MLE is that the stochastic law which determines the behavior of
he phenomena investigated (the ‘‘true’’ probability model) is known
o lie within a specified parametric family of probability distributions
herein referred to as the model). In other words, the probability
odel is assumed to be ‘‘correctly specified’’. With respect to MLE-

ased parameter estimation in seismic collapse risk assessments, the
ognormal probability distribution is assumed to govern the conditional
robability of collapse. In many (if not most) circumstances, there may
ot be complete confidence in the validity of the assumption. The

‘Huber Sandwich Estimator’’ (herein referred to as sandwich estima-
ors) is a framework used to estimate the variance of the QMLE (or
arameter estimation uncertainty). When the underlying probability
odel is incorrect, pseudo-likelihood is being maximized instead of

he true likelihood. The estimators are also commonly referred to
s pseudo-maximum likelihood estimators or simply QMLE. White
25] showed that QMLE converges to a well-defined limit and meets
he important properties of MLE such as consistency and asymptotic
ormality [27–29]. It is also shown that, with misspecification, the
symptotic variance matrix of the QMLE no longer equals the inverse
f Fisher’s information matrix. It is an important finding because being
ble to correctly specify the variance matrix is pivotal to data-driven
unction-fitting approaches. For instance, in parametric bootstrapping,
he correctness of the parameters has a direct impact on the accuracy
f the result.

When fitting a fragility, the likelihood function defines the proba-
ility that a random ground motion record causes collapse at a given
M level. The likelihood is assumed to follow a lognormal probability
istribution function. This assumption is sufficient to estimate the
ean values of the lognormal distribution parameters (𝜃, 𝛽). However,

the assumption that the probability model is correctly specified can
influence the parameter estimation uncertainty.
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3. Parameter estimation uncertainty in collapse fragility functions

3.1. Maximum likelihood method

A fragility function defines the conditional probability of collapse as
a function of the IM level. It can also be extended to other limit states
such as different damage stages but only collapse is considered in the
current study. The conditional probability of collapse is described by a
lognormal CDF as shown in Eq. (1).

𝑃 (𝐶|𝐼𝑀 = 𝑖𝑚) = 𝛷
(

ln(𝑖𝑚∕𝜃)
𝛽

)

(1)

here 𝑃 (𝐶|𝐼𝑀 = 𝑖𝑚) is the probability of collapse conditioned on
𝑀 = 𝑖𝑚, 𝜃 and 𝛽 are the median and standard deviation of ln(𝐼𝑀),
espectively, and 𝛷 is the CDF of the standard normal distribution.
he parameters that define the fragility function are 𝜃 and 𝛽. Various
tatistical procedures can be used to obtain the parameter estimates
̂ and 𝛽. A primary goal of the current study is to compare the central
endency values and associated uncertainty when MLE and QMLE are
sed to determine 𝜃̂ and 𝛽. Since the collapse data is assumed to follow
binomial distribution, the probability of 𝑘 collapses out on 𝑛 ground
otions at the 𝑗th IM level with probability 𝑝𝑗 is given by

(𝑘𝑗 collapses in 𝑛𝑗 ground motions) =
(

𝑛𝑗
𝑘𝑗

)

⋅ 𝑝
𝑘𝑗
𝑗 (1 − 𝑝𝑗 )

𝑛𝑗−𝑘𝑗 (2)

Assuming independence in the probability of 𝑘 collapses out of 𝑛 ground
motions, the likelihood function considering 𝑚 IM levels is given by

𝐿(𝜃, 𝛽) =
𝑚
∏

𝑗=1

(

𝑛𝑗
𝑘𝑗

)

𝛷
( ln(𝐼𝑀𝑗∕𝜃)

𝛽

)𝑘𝑗
⋅
[

1 −𝛷
( ln(𝐼𝑀𝑗∕𝜃)

𝛽

)]𝑛𝑗−𝑘𝑗
(3)

aking log on both sides of Eq. (3) gives the log-likelihood function as
hown in Eq. (4). The log-likelihood function is used because it is easier
o maximize using numerical optimization methods. The estimate of
he fragility function parameters (𝜃̂, 𝛽) is obtained by maximizing the
og-likelihood function as shown in Eq. (5).

(𝜃, 𝛽) = arg max
𝜃,𝛽

𝑚
∑

𝑗=1

{

ln
(

𝑛𝑗
𝑘𝑗

)

+ 𝑘𝑗 𝑙𝑛
[

𝛷
( ln(𝐼𝑀𝑗∕𝜃)

𝛽

)]

+(𝑛𝑗 − 𝑘𝑗 )𝑙𝑛
[

1 −𝛷
( ln(𝐼𝑀𝑗∕𝜃)

𝛽

)]}

(4)

{𝜃̂, 𝛽} = arg max
𝜃,𝛽

𝓁(𝜃, 𝛽) (5)

To quantify parameter uncertainty, the Score, Hessian, and Informa-
tion matrix are needed. For optimization and inference of Eq. (5), the
Score is used. By setting the gradient equal to zero and solving for the
parameters of interest, the log-likelihood function is maximized. The
Hessian is a symmetric matrix of second-order partial derivatives with
respect to the parameters of interest. The negative expectation of the
Hessian gives the Fisher’s Information matrix. Under correct probability
model specification, the inverse of the Information matrix gives the
covariance terms of the estimated parameters [19]. In the context of
seismic collapse risk assessments, the ‘‘probability model’’ refers to the
lognormal distribution. Even though the collapse data is characterized
by the binomial distribution, this part of the likelihood function is a
constant and therefore does not influence the maximization. However,
as shown in Eq. (4), the likelihood maximization is affected by the
lognormal distribution with feasible parameter estimates 𝜃̂ and 𝛽. In
ther words, the quantities of interest are the lognormal distribution
arameters.

To compute the first and second-order partial derivative of the log-
ikelihood function, (𝓁(𝜃, 𝛽)), the Gauss error function [30] is needed.
he log-likelihood function is re-written using the error function as
3

e

hown in Eq. (6). The log-likelihood functions in Eqs. (4) and (6) are
umerically equivalent.

(𝜃, 𝛽) =
𝑚
∑

𝑗=1

⎧

⎪

⎨

⎪

⎩

𝑘𝑗 ln

⎡

⎢

⎢

⎢

⎣

1
2

⎛

⎜

⎜

⎜

⎝

1 + erf

⎛

⎜

⎜

⎜

⎝

ln
( 𝐼𝑀𝑗

𝜃

)

𝛽
√

2

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

+(𝑛𝑗 − 𝑘𝑗 ) ln

⎡

⎢

⎢

⎢

⎣

1 − 1
2

⎛

⎜

⎜

⎜

⎝

1 + erf

⎛

⎜

⎜

⎜

⎝

ln
( 𝐼𝑀𝑗

𝜃

)

𝛽
√

2

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(6)

In Eq. (6), 𝑙𝑛
(𝑛𝑗
𝑘𝑗

)

has been neglected because it is a constant term
that ‘‘drops out’’ when taking first and second-order partial derivatives.
The Score, 𝑆(𝜃, 𝛽)⊤, which is computed by taking the first-order par-
tial derivative of Eq. (6), is shown in Appendix A.1. The complete
derivative terms with respect to each parameter can also be found
in Appendix A.1. Similarly, the Hessian, 𝐻(𝜃, 𝛽), is a square matrix
obtained by taking the second-order derivative of the log-likelihood
function. The matrix formulation and complete second-order derivative
terms are shown in Appendix A.2. Both the Score and Hessian will
later be used to calculate the sandwich estimator. As discussed earlier,
Fisher’s Information matrix is given by negative Hessian under correct
specification i.e., 𝐼(𝜃, 𝛽) = −E[𝐻(𝜃, 𝛽)]. Subsequently, the covariance
matrix of the parameter estimates is given by the inverse Information
matrix as shown in Eq. (7) [19].

Var(𝜃, 𝛽) = 𝐼−1 =

[

𝜎2𝜃 𝜎𝜃,𝛽
𝜎𝛽,𝜃 𝜎2𝛽

]

(7)

3.2. Generalized linear models

A Generalized Linear Model (GLM) with a link function is presented
as an alternative to the maximum likelihood method to fitting the
fragility function [3]. The inverse Probit link function links the con-
ditional mean probability of collapse to a linear predictor (𝜋). The
inverse Probit uses the standard normal CDF which makes it equivalent
to the methodology outlined in Section 3.1. Other link functions such
as Logit link can also be implemented. The GLM model is presented
as an easy-to-implement alternative to maximizing the log-likelihood
function with lognormal CDF. The GLM estimator is readily available in
popular programming languages such as Python, R, and MATLAB. It fits
the fragility function by finding the coefficients of the linear predictor
that maximizes the likelihood function. Most programming languages
use the iteratively re-weighted least squares (IRLS) [31] optimization
algorithm to find the coefficients. IRLS is essentially an L1-norm-
based minimization that reduces the contribution of large residuals
and improves the data fitting process. Additionally, most programs
provide an option to extract the Score and Hessian which makes it an
attractive alternative to MLE. Here, ‘‘MLE’’ is loosely used to represent
the methodology described in Section 3.1. It is acknowledged that
GLM also uses a maximization (or minimization of negative likelihood)
algorithm and could technically be called MLE. The upside of the GLM
is that it does not require an initial guess unlike MLE and the downside
is that the parameters in the linear predictors (𝛽0, 𝛽1) as shown in
Eq. (8) are not as directly descriptive as MLE parameters, 𝜃 and 𝛽,
where 𝜃 defines the IM level with 50% probability of collapse and 𝛽
describes the dispersion around the median. The GLM model is defined
as shown in Eq. (8)

𝑃 (𝐶|𝐼𝑀) = 𝑔−1(𝜋) = 𝛷(𝛽0 + 𝛽1 ln(𝐼𝑀)) = 𝑔−1(𝛽0 + 𝛽1 ln(𝐼𝑀))

= 𝛷
(

ln(𝐼𝑀)
𝛽

−
𝑙𝑛(𝜃)
𝛽

)

(8)

where, 𝑔(⋅) is the link function that connects 𝑃 (𝐶|𝐼𝑀) to the linear
redictor, 𝜋. Using the lognormal CDF formulation of the probability of
ollapse, the linear predictor parameters, 𝛽0 and 𝛽1 can be transformed
nto lognormal CDF parameters. The transformation is performed by
quating the terms inside the normal CDF, 𝛷(⋅). On the left-hand side in
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Eq. (8), the term with the random variable, 𝛽1 ln(𝐼𝑀), is equated with
ln(𝐼𝑀)∕𝛽 on the right-hand side. Similarly, equating the intercepts on
both sides yields the result as shown in Eqs. (9).

𝜃 = 𝑒
−𝛽0
𝛽1 (9a)

= 1
𝛽1

(9b)

One of the easy-to-use features of GLM fit is that the Hessian can
asily be extracted. To quantify uncertainty in the linear predictor pa-
ameters (𝛽0, 𝛽1), the inverse of the Fisher’s information matrix is used.
ince the primary focus of this study is to make a comparison between
LE and QMLE, the uncertainty in the linear predictor is transformed

nto the uncertainty in the median (𝜃) and standard deviation (𝛽)
sing first-order Taylor approximation. In addition to transforming the
ncertainty from GLM-based parameters to the MLE-based parameters,
qs. (10a) and (10b) are also used to verify the covariance matrix
btained using the error function.

𝑉 𝑎𝑟[𝜃] = 𝜎2𝛽0

(

𝜕𝜃
𝜕𝛽0

)2
+ 𝜎2𝛽1

(

𝜕𝜃
𝜕𝛽1

)2
+ 2𝜎𝛽0 ,𝛽1

𝜕𝜃
𝜕𝛽0

𝜕𝜃
𝜕𝛽1

(10a)

𝑎𝑟[𝛽] = 𝜎2𝛽1

(

𝜕𝛽
𝜕𝛽1

)2
(10b)

.3. Uncertainty in collapse risk

The mean annual frequency of collapse (𝜆𝑐) is used as a risk-based
erformance metric. It is calculated either by integrating the continuous
ragility function with the ground motion hazard curve or using the
iemann Sum as shown in Eq. (11). The Riemann sum is widely
sed to approximate an integral using a finite sum. To minimize the
pproximation error, the collapse probability is taken as the mid-point
f 𝑖𝑚𝑖 and 𝑖𝑚𝑖+1 as shown in Eq. (11) below

𝑐 = ∫𝑖𝑚
𝑃 (𝐶|𝐼𝑀 = 𝑖𝑚) ⋅ |𝑑𝜆𝐼𝑀 (𝑖𝑚)| =

𝑁
∑

𝑖=1
𝑃 (𝐶|𝑖𝑚) ⋅ |𝜆(𝑖𝑚𝑖) − 𝜆(𝑖𝑚𝑖+1)|

(11)

where 𝑖𝑚 is the mid-point between 𝑖𝑚𝑖 and 𝑖𝑚𝑖+1, 𝑁 is the total
umber of increments from 𝐼𝑀𝑚𝑖𝑛 to 𝐼𝑀𝑚𝑎𝑥, and 𝜆𝐼𝑀 (𝑖𝑚) is the mean

annual frequency of exceedance of ground motion intensity, im. Finally,
the variance of the annual collapse rate is estimated as shown in
Eq. (12) [3].

𝜎2𝜆𝑐 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
|𝜆(𝑖𝑚𝑖) − 𝜆(𝑖𝑚𝑖+1)||𝜆(𝑖𝑚𝑗 ) − 𝜆(𝑖𝑚𝑗+1)|𝜌𝑖𝑗𝜎𝑃 (𝐶|𝑖𝑚)𝑖𝜎𝑃 (𝐶|𝑖𝑚)𝑗

(12)

where the variance of the probability of collapse is approximated using
the first-order Taylor approximation and 𝜌𝑖𝑗 = 1.

𝜎2𝑃 (𝐶|𝑖𝑚𝑖)
=

𝜕𝛷(𝜋)
𝜕𝜋

𝜎2𝜋 (𝑖𝑚) (13)

To approximate the variance of the collapse probability, the variance
of the linear predictor is required. Eq. (14) [3] gives the variance
of the linear predictor. It is important to note that the covariance in
Eq. (7) assumes correct model specification. Eq. (14), thus, highlights
the propagation of parameter estimation uncertainty into collapse risk.

𝜎2𝜋 (𝑖𝑚) = 𝜎2𝛽0 + 𝜎2𝛽1 ln(𝑖𝑚)
2 + 2 ln(𝑖𝑚)𝜎𝛽0𝛽1 (14)

In a probabilistic sense, the collapse of a building is an event that
occurs continuously and independently with a known mean frequency
of occurrence (𝜆𝑐). In other words, the probability distribution of the
time between two events follows a Poisson process. Since it follows a
Poisson process, the probability of collapse over 𝑇 years is based on the
cumulative distribution function of the exponential distribution.
4

4. Effect of model misspecification

MLE is a flexible tool to estimate the parameters, but the funda-
mentals are often rooted in assumptions. The likelihood function is
based on an underlying assumption that the data is known to lie within
a specified parametric family of probability distributions. Misspecifi-
cation can oftentimes lead to misleading inferences. In the presence
of misspecification, standard tests such as the Wald test, Likelihood
Ratio test, and Lagrange Multiplier/Score test are invalid. However, if
a conditional mean component is correctly specified, QMLE converges
to a well-defined limit and is often consistent for the parameters of in-
terest. The variance around the parameter estimates does not equal the
inverse of Fisher’s information matrix. The ‘‘robust’’ variance estimator
is computed using sandwich estimators. In this section, some of the
important properties of QMLE are highlighted. These properties are the
basis of MLE and are important to the validity of QMLE. The theoretical
results presented in this subsection are based on White [25].

4.1. Existence of maximum likelihood parameters

Assuming that the independent random vector 𝑈 has a distribution
unction 𝐺 on 𝛺 and a measurable Euclidean space with density 𝑔, we
et 𝑓 be the density drawn from a family of distribution functions 𝐹 (𝑢, 𝜃)

for every 𝜃. Since 𝐺 is unknown, 𝐹 may or may not contain the true
robability distribution. The quasi-log-likelihood of the sample is

(𝑈, 𝜃) =
𝑛
∑

𝑖=1
log 𝑓 (𝑈𝑖, 𝜃) (15)

Maximizing Eq. (15) gives QMLE estimators as parameter estimates.
Proof that for all 𝑛, there exists a measurable estimator, 𝜃̂𝑛 can be
ound in White [25]. 𝜃 is a natural estimator for 𝜃∗, the parameter
stimate that minimizes the Kullback–Leibler Information Criterion
𝐼()) also referred to as KL divergence. KL divergence characterizes
ow far the assumed distribution (𝑓 ) is from the true distribution (𝑔).
n other words, it measures our ignorance about the true distribution.
t is important to note that divergence is not the same as distance.
ivergence does not meet the symmetric property of distance. Since the
ivergence is formulated in log space as shown in Eq. (16), the order
f 𝑓 and 𝑔 matters. The divergence of 𝑓 from 𝑔 would not be the same
s the divergence of 𝑔 from 𝑓 .

(𝑔 ∶ 𝑓, 𝜃) = E[log(𝑔(𝑈 )∕𝑓 (𝑈, 𝜃))] = ∫ log(𝑔(𝑢))𝑑𝐺(𝑢) − log(𝑓 (𝑢, 𝜃))𝑑𝐺(𝑢)

(16)

Assuming that 𝐼(𝑔 ∶ 𝑓, 𝜃) has a unique minimum as 𝜃∗, the QMLE esti-
mate, 𝜃̂ converges to 𝜃∗ as 𝑛 → ∞. This convergence signifies that QMLE
is a strongly consistent estimator for 𝜃∗. In other words, it ensures
we minimize our ignorance about the structure of the true probability
model. If the probability model is correctly specified (i.e. 𝑔(𝑢, 𝜃) =
𝑓 (𝑢, 𝜃)), for some 𝜃0, then 𝐼(𝑔 ∶ 𝑓, 𝜃) achieves its unique minimum at
𝜃∗ = 𝜃0, so that 𝜃̂ is consistent for the true parameter estimates, 𝜃0.

4.2. The information matrix test for misspecification

White [25] showed that the QMLE is asymptotically normally dis-
tributed
√

𝑛(𝜃̂ − 𝜃∗) ∼ 𝑁(0, 𝐴(𝜃)−1𝐵(𝜃)𝐴(𝜃)−1) (17)

here 𝐴(𝜃) and 𝐵(𝜃) are called sandwich estimators and can be com-
uted as

𝐴(𝜃) = 1
𝑛

𝑛
∑

𝑡=1

𝜕2𝑙𝑜𝑔𝑓 (𝑢𝑡, 𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗

= 𝐻(𝜃) (18a)

(𝜃) = 1
𝑛
∑ 𝜕𝑙𝑜𝑔𝑓 (𝑢𝑡, 𝜃) ⋅

𝜕𝑙𝑜𝑔𝑓 (𝑢𝑡, 𝜃) = 𝑆(𝜃)𝑆(𝜃)⊤ (18b)

𝑛 𝑡=1 𝜕𝜃𝑖 𝜕𝜃𝑗



Structural Safety 96 (2022) 102185L. Dahal et al.

w
p
o
c

𝐴

W
s
√

5

M
a
i
p
p
i
3
i
i
s
T
i
u
n
p
s
A
b

c
a
l
t
b
t
d
l
l
s
u
P
u
s
(
a
t
d

Table 1
Description of wood-frame buildings.

Building name No. of stories Description

B1-Existing 1 Stucco exterior, gypsum wallboard interior with 2 ft high stucco cripple wall
B1-Retrofitted 1 B1-Existing retrofitted with 2 ft tall wood-frame shear wall
B2-Existing 1 Stucco exterior, gypsum wallboard interior with 6 ft high stucco cripple wall
B2-Retrofitted 1 B2-Existing retrofitted with 6 ft tall wood-frame shear wall
B3-Existing 2 Stucco exterior, gypsum wallboard interior with 2 ft high stucco cripple wall
B3-Retrofitted 2 B3-Existing retrofitted with 2 ft tall wood-frame shear wall
B4-Existing 2 Stucco exterior, gypsum wallboard interior with 6 ft high stucco cripple wall
B4-Retrofitted 2 B4-Existing retrofitted with 6 ft tall wood-frame shear wall
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The information matrix equivalence theorem essentially says that
hen the model is correctly specified, the information matrix can be ex-
ressed in either Hessian form, −𝐴(𝜃) or the outer product form 𝐵(𝜃). In
ther words, the equality condition to identify model misspecification
an be formulated simply as

(𝜃) + 𝐵(𝜃) = 0 (19)

hen the equality holds, the asymptotic normality shown in Eq. (17)
implifies to

𝑛(𝜃̂ − 𝜃∗) ∼ 𝑁(0, 𝐴(𝜃)−1) (20)

When the equality in Eq. (19) fails, it is concluded that the model is mis-
specified. One of the many ways to check the severity of misspecifica-
tion is to analyze the variance estimator obtained from 𝐴(𝜃)−1𝐵(𝜃)𝐴(𝜃)−1

. Case study

To study the effect of model misspecification, collapse data from
SA of eight wood-frame buildings are used. The single-family

rchetypes were developed as part of the Pacific Earthquake Engineer-
ng Research (PEER) Center and California Earthquake Authority (CEA)
roject [32] on cripple wall residential buildings. The objective of the
roject was to quantify the benefit of retrofitting unbraced cripple walls
n high seismic regions. The overall building dimension was 40 ft ×
0 ft. As part of the PEER-CEA project, various structural properties that
nfluence the performance of the building such as cripple wall height,
nterior panel sheathing material, seismic weight, and the number of
tories were considered to create 64 distinct building archetypes [33].
able 1 summarizes the characteristics of the four variants considered

n the current study. Wood structural panels are used to retrofit the
nbraced and unbolted cripple wall, which represents a soft-story vul-
erability. For the retrofitted buildings, the wood structural panels are
laced at the two ends of each line of cripple walls. The length of the
tructural panels varies based on the FEMA P-1100 specification [34].
dditional details about the variants and their associated retrofits can
e found in Reis [33] and Welch and Deierlein [32].

Three-dimensional structural models of one-story and two-story
ripple wall buildings are constructed and nonlinear dynamic analyses
re performed using the Open System of Earthquake Engineering Simu-
ation (OpenSEES) [35]. Hysteretic shear spring elements are placed at
he centroid of the cripple walls to simulate their force–displacement
ehavior. Two parallel Pinching4 hysteretic springs are used to capture
he wide range of cyclic behavior between the near elastic (small
isplacement) response and the highly nonlinear post-peak behavior at
arge displacements. Each building was subjected to 16 different hazard
evels with 45 ground motions at each individual hazard level. The
pectral acceleration corresponding to a period of 0.25 s (𝑆𝑎0.25𝑠) is
sed as the IM. The ground motions were also selected as a part of the
EER-CEA project for a set of ten sites [36]. The ground motion records
sed to produce analysis results are based on a San Francisco site with
tiff soil (Soil D) and a target upper 30-meter shear wave velocity
𝑉𝑆30) of 270 m/s. Fig. 1 summarizes the median collapse intensity
nd dispersion values obtained by implementing MLE. As expected,
he retrofitted buildings have higher median collapse capacities. The
5

ispersion, which quantifies record-to-record uncertainty, is generally p
omparable between the existing and retrofitted cases. It is interesting
o note that the median collapse capacity of the retrofitted two-story
uilding with 6 ft tall wood-frame shear wall (B4) is almost the same
s the retrofitted two-story building with 2 ft tall shear wall (B3).

Assuming correct specification, variance estimators are computed
sing Eq. (7). The variance around the parameter estimates (i.e., Var(𝜃)

and Var(𝛽)) is summarized in Fig. 2. For comparison, a standardized
easure of variability, coefficient of variation (CV) is used. The CV is

alculated by taking the ratio of standard deviation to the mean values.
omparable CV of the median collapse intensity for the existing and the
etrofitted buildings as shown in Fig. 2(a) implies that retrofitting the
uilding neither increases or decreases the relative dispersion around
he median value. With the exception of building B2, Fig. 2(b) shows
hat a similar conclusion can be drawn about the relative dispersion
round the log standard deviation.

To better understand the uncertainty around the parameter esti-
ates, data from building B2 is used to plot their probability density

unction (PDF). Figs. 3(a) and 3(b) show the PDF of the median and
ispersion respectively. The result shows that most of the probability
ensity is concentrated around the mean value in the existing case.
or the retrofitted case, the probability density is more distributed
mplying higher levels of dispersion, though the increase is not substan-
ive. Similarly, the PDF of the log standard deviation shows a slightly
roadened tail for the retrofitted case which explains the higher CV as
ighlighted in Fig. 2(b). Analogous results were obtained for the rest
f the buildings as well where slightly spiked probability density was
bserved for the median value and more evenly distributed probability
ensity for the log standard deviation. Fig. 3 also shows the PDF
dashed lines) of the parameter estimates obtained using the sandwich
stimators.

.1. Effect of model misspecification in fragility function fitting

As shown in Eq. (5), MLE is implemented to estimate the log-
ormal distribution parameters (𝜃̂, 𝛽). Following the setup outlined in
ppendix B, the score and the Hessian are computed. Assuming that

he lognormal probability distribution is the ‘‘true’’ probability model
i.e., correct specification), an asymptotic covariance matrix is com-
uted. As shown in Eq. (20), the covariance matrix equals the inverse
f the negative Fisher’s Information matrix. With known variability
n the parameter estimates, the uncertainty in the fragility curve is
uantified by establishing a confidence interval. Fig. 4. shows the
itted fragility curve in black for building B2-Existing along with the
mpirical probability of collapse data points in green. It is found that
he 95% confidence interval provides a good range by bounding almost
ll of the empirical data.

In addition to quantifying the parameter estimation uncertainty,
everal other techniques are also presented as an alternative to com-
uting the Hessian matrix. The second-order derivative terms of the
rror function-based likelihood with respect to its parameters are used
o formulate the Hessian matrix. The purpose of presenting multiple
ethods of computing the Score and the Hessian is two-fold: (1)

erifying the rigorousness of the error function formulation and (2) pre-
enting an alternative methodology that can be easily implemented in

rogramming languages such as Python, R, and MATLAB. In addition to
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Fig. 1. (a) Median and (b) log standard deviation of the collapse intensity for all four existing and retrofitted building cases.
Fig. 2. Coefficient of variation for (a) the median and (b) log standard deviation under correct specification assumption.
Fig. 3. Normal PDF showing the distribution of the (a) median and (b) log standard deviation of the collapse capacity for the B2 building.
computing the error function-based covariance matrix, two supplemen-
tal methodologies to compute covariances are also presented: (1) Taylor
approximation (2) Numerical integration using built-in packages.

The Taylor series expansion is used to obtain a first-order second-
moment approximation of the parameter estimates. Eqs. (10)–(14)
shows the steps used to estimate the variance in 𝜃 and 𝛽. The values
obtained should approximately be equal to the variance terms as shown
in Appendix B.2. Additionally, built-in numerical differentiation tools
in programming languages such as Python and R are also used to extract
the Hessian. In Python, the ‘‘numdifftools’’ package [37] is used to
estimate the Hessian and the Score (Jacobian). Numdifftools uses the
complex-step method of numerical differentiation. Similarly, in R, the
optimization package ‘‘optim’’ [38] returns a numerically differentiated
Hessian matrix. For all eight buildings analyzed, the Hessian matrix is
6

found to be consistent regardless of the method, or the built-in package
used to compute it.

After the Hessian and the Score are verified to be correct, they are
used to assess the equality condition outlined in Eq. (19). The sandwich
estimators shown in Appendix B.1 demonstrate the result obtained for
B2-Existing. The results show that the equality condition does not hold,
i.e. 𝐴(𝜃) + 𝐵(𝜃) ≠ 0. It is found that none of the eight buildings meet
the equality condition. The result signifies the prevalence of model
misspecification in the maximum likelihood method used to get the
lognormal distribution parameters (𝜃, 𝛽).

The severity of misspecification is determined by analyzing the
values obtained from 𝐴(𝜃)−1𝐵(𝜃)𝐴(𝜃)−1. Appendix B.2 shows the covari-
ance matrix computed based on the inverse of the Fisher’s information
matrix (MLE) and the sandwich estimators (QMLE). The comparison
shows that the parameter variances obtained using sandwich estimators
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Fig. 4. Fitted fragility curve for an example building (B2-existing) with 95% confidence
interval.

are approximately half that of the case where the inverse Fisher’s
information matrix is used. Fig. 5 summarizes the CV values for the
respective parameter estimates using the sandwich estimators. On av-
erage, the CV of the median for the existing building tends to be higher
compared to the retrofitted counterpart while the CV of the logarithmic
standard deviation does not follow any specific pattern. The results
from Fig. 2(a) and Fig. 5(a) show that the CV of the median collapse
capacity obtained from the sandwich estimator (QMLE) ranges from
42% to 70% that of the MLE case. Similarly, Figs. 2(b) and 5(b) indicate
that the CV of the log standard deviation computed using QMLE is
48–88% of the corresponding values from MLE. In other words, the
parameter estimation dispersion in 𝜃̂ and 𝛽 is generally lower when
probability model misspecification is considered.

5.2. Effect of model misspecification in collapse risk

As shown in Eq. (11), the mean annual frequency of collapse is
computed using the estimated fragility function parameters. Fig. 6
shows the estimated value of the collapse rate for all buildings (existing
and retrofitted). Consistent with our prior knowledge of the physi-
cal implications, the retrofitted buildings have lower collapse rates
which indicate enhanced performance. We also propagate the param-
eter estimation uncertainty in the fragility to the collapse rate. More
specifically, the covariance matrix corresponding to 𝜃 and 𝛽 obtained
from the inverse Fisher’s information matrix is used to quantify the
parameter estimation uncertainty in the collapse rate (Eqs. (12)–(14)).
To assess the impact of model misspecification, the covariance matrix
obtained from the sandwich estimator is also used. Fig. 7 summarizes
the CV values for the collapse rate from MLE and QMLE. Fig. 7(a) shows
the results computed assuming the correct specification (MLE) while
Fig. 7(b) summarizes the results obtained using the sandwich estimator
(QMLE). Both figures show that the standardized dispersion in the col-
lapse rate appears to be higher in all the retrofitted cases as compared
to the existing buildings. In terms of the effect of misspecification, the
net result is that the CV in the collapse rate obtained from QMLE ranges
from approximately 40–80% of the MLE values.

5.3. Bootstrapping

In addition to the procedures described in Section 3, sampling
or resampling techniques are used to quantify the uncertainty in the
collapse risk. Monte Carlo simulation is used to draw random samples
utilizing the fragility parameter and covariance estimates as shown in
Eqs. (9) and (10). The Monte Carlo method can be used as a stand-alone
7

technique. However, in this study, the simulated samples are resam-
pled with replacement. In essence, the random sample generated from
Monte Carlo is treated as a population from which a finite number of
samples are drawn. It is important to note that the variance is inversely
related to the number of realizations. In other words, it is possible
to fine-tune the variability in the random samples by drawing a large
number of realizations. To negate subjectivity, 500 samples are drawn
as was done in previous studies [6,20]. Fig. 8(a) shows the empirical
distribution of fragility curves obtained from Monte Carlo simulation
for the B2-Existing building and Fig. 8(b) presents a comparison for
the standard-deviation of the collapse rate for all buildings. In Fig. 8(a),
we see that central tendency of the Monte Carlo samples average to the
empirical fragility curve shown in Fig. 4. Also, Fig. 8(b) highlights that
the standard deviation computed using Eq. (12) is generally equivalent
to the one obtained from the bootstrapping method.

6. Conclusion

This paper discussed the effect of probability model misspecifi-
cation on fragility function parameter estimates (see Table 2). More
specifically, the effect of model misspecification is propagated into
seismic collapse performance and risk assessment to study the effect
on parameter estimation uncertainty. The successful application of
quasi-maximum likelihood estimation (QMLE) requires ‘‘sandwich’’ es-
timators that rely on the Jacobian (Score) and Hessian of the likelihood
function. The Hessian is computed using the error function and is
verified using two different approaches (1) Taylor approximation (2)
Numerical integration using a built-in software package. The infor-
mation matrix equality test performed on collapse data from single
family woodframe buildings showed that model misspecification is
present. The implication to the collapse fragility was evaluated by
comparing the coefficient of variation (CV) of the median (𝜃̂) and
log standard deviation (𝛽), which represent the parameter estimation
uncertainty. For 𝜃̂, the CV obtained from QMLE, was, on average, 38%
lower than the case where maximum likelihood estimation (MLE) is
used. Similarly, the average ratio between the CV of 𝛽 from QMLE
and MLE was 64%. The fragility parameter estimation uncertainty
was also propagated into the collapse risk assessment using analytical
(Riemann Sum) and sampling (Monte Carlo Simulation) approaches,
which produced comparable results. Compared to when MLE was used,
the CV of the mean annual frequency of collapse due to parameter
estimation uncertainty was computed to be 17–58% lower in the QMLE
case.

MLE and other parameter estimation approaches such as Gener-
alized Linear Models are commonly used in research and practice
with the assumption that the probability model is correctly specified
which might not always be the case. Oftentimes, the assumption about
the ‘‘true’’ model introduces additional uncertainty in the parameter
estimates. This paper demonstrated the use of the Information equality
test to identify probability model misspecification and quantify its
effect on collapse risk. In the current study, a robust consideration
of misspecification was found to generally reduce the parameter es-
timation uncertainty in collapse risk compared to when the correct
probability model is assumed. However, it is important to note that only
a single construction type (woodframe residential buildings) and limit
state (collapse) was considered. Additional studies are needed where
the effect of probability model misspecification on parameter estima-
tion uncertainty for other construction types (e.g., steel and concrete
moment frames) and limit states (e.g., demolition, post-earthquake
safety and functionality) is evaluated. If there are situations where a
robust consideration of model misspecification leads to an increase in
parameter estimation dispersion (e.g., [39]), this additional uncertainty
should be considered in the associated risk assessment.
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Fig. 5. Coefficient of variation of the (a) median and (b) log standard deviation computed using sandwich estimators.
Fig. 6. Estimated mean annual frequency of collapse for all building cases.

Table 2
Summary of important theorems implemented in QMLE.

Theorem Description

Consistency
Theorem

Assuming that (1) the probability density, 𝑓 (𝑈𝑖 , 𝜃) is
observable and (2) the density is twice continuously
differentiable on 𝜃, as 𝑛 → ∞, 𝜃̂𝑛 → 𝜃∗. The QMLE is a
consistent estimator of the ‘‘true’’ parameter values (𝜃∗)
which minimizes the KL divergence.

Asymptotic
Distribution
Theorem

As 𝑛 → ∞,
√

𝑛(𝜃̂𝑛 − 𝜃∗) converges to a zero-mean Gaussian
distribution with non-singular covariance matrix
𝐴(𝜃)−1𝐵(𝜃)𝐴(𝜃)−1. If the probability model is correctly
specified i.e., 𝐴(𝜃) = −𝐵(𝜃), the covariance matrix is simply
represented by 𝐴(𝜃)−1. Hence, the asymptotic distribution is
a zero-mean Gaussian with 𝐴(𝜃)−1 covariance matrix.

The Information
Matrix
Equivalence
Theorem

If the Hessian matrix-based covariance matrix (𝐴−1(𝜃)) and
gradient-based covariance matrix (𝐵−1(𝜃)) are
asymptotically different, it indicates the presence of model
misspecification. In other words, 𝐴(𝜃) + 𝐵(𝜃) = 0 can be
used as a basis for the identification of the probability
model misspecification.

Software tools

For those interested in adopting the methodology, codes used to pro-
duce results in this paper are available at GitHubPage. The code utilizes
an object-oriented programming paradigm to make the application of
collapse risk assessment seamless. The code implements MLE and GLM
in addition to providing an option to conduct bootstrapping.
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Appendix A. Maximum likelihood equations using the error func-
tion

Let, 𝐸 = 𝑒
−

ln
( 𝐼𝑀𝑗

𝜃

)2

2𝛽2 ; 𝑄 = 𝑒
−

ln
( 𝐼𝑀𝑗

𝜃

)2

𝛽2 ; 𝑃 = erf

(

ln
( 𝐼𝑀𝑗

𝜃
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2𝛽
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A.1. Score

𝜕𝓁(𝜃, 𝛽)
𝜕𝜃

=

√

2
√
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A.2. Hessian
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Fig. 7. Comparison of coefficient of variation of the collapse rate computed using (a) asymptotic variance estimators and (b) sandwich estimators.
Fig. 8. (a) Monte Carlo fragility samples for B2-Existing. (b) Comparison of standard-deviation computed using Taylor approximation and bootstrapping method.
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Appendix B. An example implementation of the equality test

MLE and QMLE is implemented using the collapse data of the
building B2-Existing.
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B.1. Sandwich estimators

The sandwich estimators (𝐴(𝜃) and 𝐵(𝜃)) are computed using
Eq. (18)

𝐴(𝜃) =
[

122.7572 −5.5052
−5.5052 638.9830

]

𝐵(𝜃) =
[

63.6039 −14.1952
−14.1952 324.0924

]

B.2. Variance estimators

The following matrices represent the variance estimators. 𝐴(𝜃)−1 is
the variance estimator under correct specification (MLE).
𝐴(𝜃)−1𝐵(𝜃)𝐴(𝜃)−1 is the variance estimator for QMLE.

𝐴(𝜃)−1 =
[

8.1493𝑒−03 7.0211𝑒−05

7.0211𝑒−05 1.5655𝑒−03

]

𝐴(𝜃)−1𝐵(𝜃)𝐴(𝜃)−1 =
[

4.2240𝑒−03 −6.9977𝑒−08

−6.9977𝑒−08 7.9438𝑒−04

]
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